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Dendritic cells as key players in systemic lupus erythematosus
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Abstract

System lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple organs, and persistent disease 
activity is associated with increased morbidity and mortality. Impairment of immune cell function and loss of immune 
tolerance to self-antigens are significant determinants that trigger inflammation and drive SLE pathogenesis. Dendritic 
cells (DCs) are the most potent antigen-presenting cells that serve as a critical link between innate and adaptive im-
mune system. SLE development and pathogenesis are associated with aberrant regulation in homeostasis and function 
of DCs, therefore, DC-targeted therapies have become of importance for treatment of SLE and autoimmune diseases. 
This review focus on the significance of DCs in promoting of SLE pathogenesis, and further discuss the clinical poten-
tial of DCs in SLE therapy. The insights on the roles of DCs in SLE will provide the improvement of treatment strategy 
for SLE patients. 
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a promising approach for autoimmune disease treatment. 
Mounting evidences have described pathogenic roles of DCs 
in SLE, and pointed toward the significance of DCs in SLE 
therapy. Herein the implication of DCs in SLE pathogenesis 
and the clinical potential of DC-targeted therapies in SLE are 
discussed. 

Introduction
Systemic lupus erythematosus (SLE) is a chronic autoim-

mune disorder characterized by autoantibody production, 
immune complex deposition, and multi-organ involvement. 
The etiology of SLE still remains elusive; however, multiple 
factors, including genetic susceptibility, age and hormonal 
factors, and environmental risk, have been suggested to influ-
ence disease onset and pathogenesis. Underlying mechanisms 
of SLE pathogenesis, involving in dysregulation of innate  
immune cells, loss of B- and T-cell tolerance to self-antigens, 
and perpetuate cytokine production, propagate inflammation  
and tissue damages.

Dendritic cells (DCs) are innate immune cells acting as 
antigen-presenting cells (APCs) that central to immune ac-
tivation and immune tolerance. Types of stimuli and envi-
ronmental factors are critical for facilitating DCs to develop 
their multifaceted functionality that determines the outcome 
of adaptive immune response. Hyperresponsiveness and al-
tered tolerogenicity of DCs are associated with autoimmune 
disease development and pathogenesis, therefore, DC-targeted 
therapies aiming at induction of self-tolerance have become 

Dendritic cell subsets 
Dendritic cells are heterogeneous cell population, which 

commonly classified into two lineages; conventional DCs 
(cDCs) and plasmacytoid DCs (pDCs), which differ in phe-
notypic and functional properties. The cDCs confer supe-
rior to T cell activation and differentiation through their 
abilities of antigen presentation, co-signal transmission and 
cytokine production. In contrast, pDCs are poor in T cell 
activation due to their low expression level of MHC class II 
and co-stimulatory molecules. Conventional DCs express the 
transcription factor, zinc finger and BTB domain containing 
46 (Zbtb46), and are further categorized into two subtypes, 
cDC1 and cDC2 based on their lineage transcription factors, 



Asian Pac J Allergy Immunol 2020;38:225-232 DOI 10.12932/AP-070919-0639

226

and prevent inflammation. A recent study has demonstrat-
ed that pDCs employed IDO activity to promote CD4+Fox-
p3+Treg cell differentiation and protect against atherosclero-
sis.17

Human DCs
The investigation and characterization of human DC lin-

eage are limited due to the dilemma of the in vivo study. At 
present, human myeloid and lymphoid tissue-resident DCs 
are better characterized, while the migratory DCs are un-
clearly identified. Human cDC1s are characterized by CD141 
(blood dendritic cells antigen (BDCA) 3) expression, while 
cDC2s are restricted to CD1c (BDCA1) expression.2 Human 
and murine cDCs share the transcriptional signatures and 
phenotypes, but differ in some functional features. Both hu-
man cDC1s and cDC2s could produce IL-12, and induce 
the subsequent Th1 immunity, and activation of these cDCs 
by thymic stromal lymphopoietin (TSLP) skewed T cells  
toward Th2 response in allergic diseases.18,19 Only a couple 
studies have demonstrated the implication of human cDCs 
in immune tolerance. The blood circulating CD141+ CD163+ 
cDC1s producing IL-10 were found to potentially induce 
IL-10 producing Tregs, while CD1c+ cDC2s secreted IL-10,  
IL-27 and TGF-β in response to infection to inhibit effector  
T cells and expand IL-10 producing Tregs.20,21 

The lineage markers for human pDCs are CD45RA, 
CD123, CD303 (BDCA2) and CD304 (BDCA4).2 Similar 
to murine pDCs, substantial type I IFN production of hu-
man pDCs is obligated to TLR7 and TLR9 activation. Simi-
lar to murine pDCs, human pDCs also participate in the 
maintenance of immune tolerance. Human pDCs exploited 
IDO, granzyme B, and inducible T-cell co-stimulator ligand 
(ICOSL) to mediate Treg expansion and regulate peripheral 
tolerance.17,22,23 

phenotype and function. Two major transcription factors,  
basic leucine zipper transcriptional factor ATF-like 3 (BATF3) 
and interferon regulatory factor (IRF) 8 are required for 
cDC1 development, while IRF4 is critical for cDC2 commit-
ment. Plasmacytoid DCs express the specific transcription 
factor, E-protein transcription factor 4 (TCF4 or E2-2) that 
regulates their development and function.1,2 In this review, 
we exclude epidermal Langerhans cells (LCs) because sever-
al recent evidences have unveiled that the primitive origins 
of LCs are yolk sac macrophages and fetal liver monocytes, 
and phenotype and function of LCs are in between DCs and  
macrophages.3,4

Murine DCs
Mouse model is commonly used for preclinical study to 

assess therapeutic implication of DCs so it is important to 
understand the subset of DC in mice as well. Murine cDCs 
residing in lymphoid tissues (lymph nodes and spleen) and 
non-lymphoid tissues are called lymphoid tissue-resident 
cDCs and migratory cDCs, respectively. The common mark-
ers of murine cDCs are CD11c and MHC class II, and the 
distinct cDC subtypes are further identified by additional 
markers. CD8α is uniquely expressed on lymphoid tissue-res-
ident cDC1 while CD103 is the major marker of migratory 
cDCs. Both CD8α resident DCs and CD103 migratory DCs 
share the phenotypic markers, C-type lectin receptor (Clec) 
9A (also known as dendritic cell NK lectin group receptor, 
DNGR1), XCR1 and CD24.1 cDC1s produce IL-12 and IFN-γ 
which orchestrate T helper (Th) 1 differentiation, and they 
are particularly capable of cross-presentation to induce cy-
totoxic T lymphocyte (CTL) response.5,6 Besides, cDC1s play 
a role in the maintenance of peripheral tolerance by secret-
ing TGF-β to mediate antigen-specific FoxP3+ regulatory T 
cells (Tregs).7,8 cDC1s have been shown to express high level 
of indoleamine 2,3-dioxygenase expression (IDO) and they 
have become more tolerogenic upon IFN stimulation in a 
IDO-dependent manner.9 Murine intestinal CD103+ DCs also  
express IDO and this subset play a crucial role in the mainte-
nance of mucosal tolerance.10 

The phenotypic markers of murine lymphoid tissue-resi-
dent cDC2s is CD8α− CD11b+ dendritic cell immunorecptor 
2 (DCIR2)+ signal regulatory protein α (SIRPα)+, while the 
markers for migratory cDC2s are CD103− CD11b+ CCR2+ 
SIRPα+ CX3CR1+. cDC2s preferentially mediate Th2 and Th17  
response under the regulation of IRF4.11,12 Furthermore, lym-
phoid tissue-resident cDC2s could support humoral immu-
nity by promoting T follicular helper (Tfh) differentiation 
through Notch-2-dependent mechanism.13 cDC2s also par-
ticipated in immune tolerance by triggering Treg differentia-
tion in thymus and peripheral tissues.14,15 Murine cDC2s ex-
pressed low level of IDO, however, they could be tolerogenic  
in response to IFN-γ but independent on IDO activity.16

Plasmacytoid DCs are specialized cells that potentially 
produce high level of type I IFN, especially in a Toll-like re-
ceptor (TLR) 7 and TLR9 dependent fashion. Murine pDCs 
are characterized as CD11clo MHC class IIlo B220+ Siglec-H+ 
and BM stromal cell Ag-2 (BST2; CD137; plasmacytoid 
dendritic cell antigen-1 or PDCA-1)+ cells.1 In steady state, 
pDCs are innate inducers that maintain peripheral tolerance

Role of dendritic cells in systemic lupus erythe-
matosus

Although, the mechanism how the immune tolerance is 
disrupted in SLE is not yet well clarified, DCs are thought to 
play a key role in initiation, amplification and perpetuation 
of disease (Figure 1). Several studies have reported the sig-
nificant alterations in frequency, phenotypes and functions 
of DCs in SLE patients when compared to those of healthy 
individuals. For example, the decreased frequencies of blood 
circulating cDCs and pDCs with no perturbation of their 
functions were related to disease activity in patients with ac-
tive SLE, while the increased accumulation of these DCs in 
the affected tissues was associated to the tissue inflammation 
and damages.24,25 Similar to human, lupus prone mice showed 
high infiltration of pDCs and cDCs in spleens and kidneys at 
the progressive period of disease.26,27 These data suggest that 
DC accumulation in the organs may contribute to the tissue 
inflammation and SLE pathogenesis. 

The increased apoptotic cells as a result of dysregulat-
ed cellular apoptosis and defective clearance of dying cells 
are perhaps initiators of tissue injuries and SLE pathogene-
sis. The high levels of apoptotic cells were detected in serum, 
lymphoid organs and inflamed tissues in patient with SLE.28 
Self-RNA and self-DNA released from apoptotic cells are the
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source of stimuli which activate pDCs via the engagement of 
TLR7 and TLR9 and retinoic acid-inducible gene 1 (RIG-I)-
like receptors (RLRs), and consequently result in robust type 
I IFN production.29,30 The levels of type I IFN were marked-
ly elevated in the serum of SLE patients, and the spleens of 
lupus prone mice were correlated to the increased number 
of activated pDCs.27,31 The deficient in type I IFN in murine 
lupus model showed the reduction in anti-DNA antibodies 
and glomerulonephritis pathology.32 In parallel, deletion of 
pDCs in lupus prone mice before disease initiation resulted in  
the impaired autoreactive T and B cells, reduced autoanti-
body production, decreased type I IFN expression, and ame-
liorated organs pathogenesis.33 Type I IFN was also involved 
in the activation of monocytes, neutrophils, and adaptive im-
mune cells as well as further induces cDC differentiation.34,35 
It has been well-known that type I IFN plays a critical role in 
conversion of Th1, however, the role of type I IFN in Th17 

induction is still ambiguous. Evidences have demonstrated  
that TLR7-activated pDCs promoted autoimmune Th17 re-
sponse, and high levels of type I IFN were related to high 
numbers of Th17 in serum of SLE patients.36,37 

Other stimuli influencing pDC stimulation and type I IFN 
production have also been described. High mobility group 
box 1 protein (HMGB1) is a ubiquitous nuclear protein pas-
sively released by necrotic cells, which was identified as a 
danger-associated molecular patterns (DAMPs) that can trig-
ger inflammation and activate immune cells. HMGB1 binds 
to TLRs and receptor for advanced glycation end products 
(RAGE) and transduces signal through nuclear factor kap-
pa light chain enhancer of activated B cells (NF-κB) path-
way.38 High levels of HMGB1 were presented in serum of SLE  
patients, and correlated to the levels of serum type I IFN.39 
HMGB1 in complex with DNA facilitated the activation 
of TLR9 and RAGE on pDCs and resulted in robust type I
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Figure 1. Potential roles of DCs in promoting SLE pathogenesis. 
In SLE, clearance of dying cells is defective which lead to persistent releasing cellular components that vigorously stimulate DCs. 
Activated pDCs secrete type I IFN to promote innate and adaptive immune responses, while activated cDCs present self-antigens 
and stimulate autoreactive lymphocytes. Effector lymphocytes in turn enhance the capacity and ability of DCs, resulting in ampli-
fication and perpetuation of inflammation and SLE pathogenesis. 
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lesser side effects. Since DCs can be manipulated to restore T- 
and B-cell tolerance in an antigen-specific manner, a clinical 
manipulation of DCs to either decrease their immunogenic-
ity or increase their tolerogenicity have been of high interest  
for autoimmune disease treatment.

Tolerogenic DCs (tol-DCs) are DCs with immunosup-
pressive properties and abilities to induce immune tolerance. 
The phenotypic and functional features of tol-DCs depend 
on extrinsic and intrinsic factors, and the state of matura-
tion. Ex vivo tol-DCs are generated from peripheral blood  
monocytes, bone marrow, and cord blood progenitor cells 
and are subsequently conditioned with pharmacologic inter-
ventions to induce tolerogenicity. The common phenotypes 
of tol-DCs are reduced expression of T cell co-signaling and 
MHC molecules, upregulated expression of immuomodula-
tory molecules, decreased production of pro-inflammatory  
cytokines, enhanced production of immunosuppressive cy-
tokines, and high capacity of Treg induction (Figure 2). Tol-
DCs can be induced by a wide variety of pharmacologic in-
terventions, including immunosuppressive drugs, cyclic AMP 
inducers, chemicals, proteins and neuropeptides and cyto-
kines.54 However, tolerogenicity of DCs is varied among the 
drugs and protocols, and it should be concerned for the treat-
ment outcome of autoimmune diseases.55 

To date, autologous tolDC-based therapy is ongoing clini-
cal trials for the treatment of type 1 diabetes mellitus (T1D), 
rheumatoid arthritis (RA), multiple sclerosis (MS) and 
Crohn’s disease. Tolerogenic DC-based therapy is promising  
so far for SLE patients as well. A few evidences have ex-
plored tolDC induction from autologous monocytes of SLE 
patients. Initially, apoptotic cells opsonized with iC3b was 
capable of induction of tol-DCs with low maturation and  
resistant to inflammatory stimuli, however, these apoptotic  
cells failed to generate tol-DCs from monocytes of SLE pa-
tients.56 Thereafter, treatment of MoDCs from SLE patients 
with the combination of 1,25-dihydroxyvitamin D3 (VitD3) 
and dexamethasone could successfully generate tol-DCs with 
the capability of high IL-10 production, induction of IL-10 
producing Tregs, and suppression of IFN‐γ and IL‐17 pro-
ducing T cells.57 A recent study has demonstrated that culture 
of MoDCs from SLE subjects in the presence of dexameth-
asone together with rosiglitazone could skew DCs toward 
tolerogenic phenotypes, and these DCs exhibited the reduced 
expression of co-stimulatory molecules, decreased IL-6 and 
IL-12 production, and high IL-10 production in response to 
lipopolysaccharide (LPS). In addition, the generated tol-DCs 
were resistant to apoptotic cells-induce maturation, and sup-
pressed allogeneic T cells proliferation in vitro.58 Intriguing-
ly, the tolerogenic probiotics, Lactobacillus delbrueckii and L. 
rhamnosus were capable of inducing tol-DCs from MoDCs 
of SLE patients, and the tolerogenic probiotics-treated DCs 
displayed downmodulate expression of maturation markers.  
Furthermore, the expression of IDO and IL-10 was signifi-
cantly unregulated while IL-12 was decreased in the tolero-
genic probiotics-treated DCs.59 Although safety and feasibil-
ity of autologous tol-DCs generated from monocytes of SLE 
patients should be further investigated, these data show the  
exciting prospect of autologous tol-DCs in SLE therapy. 

IFN production.40 Elevated circulating immune complexes 
in serum of SLE patients have been shown to be correlated  
with disease severity.41 Nucleic acid-containing immune com-
plexes were internalized by pDCs via FcγRIIa into endo-
some where they activated TLR7 and TLR9 and resulted in 
type I IFN production.42 In addition, type I IFN production  
by IC-stimulated pDCs were markedly enhanced in the pres-
ence of activated T cells.43 

Conventional DCs also play an important role in SLE on-
set and pathogenesis. The in vitro studies using human mono-
cyte-derived DCs (MoDCs) and murine bone marrow-de-
rived DCs (BMDCs) allow the understanding of the roles 
of cDCs in SLE. Apoptotic cells elicited MoDCs to undergo 
maturation and produce high level of IL-6, a key cytokine for 
Th17 polarization.44 In line, apoptotic cell-activated BMDCs 
showed the increased capacity to induce Th17 response.45 
The enhanced IgG production by plasmablasts also affected 
cDC differentiation and function in SLE. The interaction be-
tween IgG-containing immune complexes and TNF receptor 
I (TNFR1) on monocytes was required for cDC differentia-
tion. The immune complexes also promoted FcγR-mediated 
endocytosis in cDCs, which conferred the amplified immune 
response.46,47 The in vivo study demonstrated that adoptive 
transfers of splenic DCs from aged lupus mice could induce B 
cell hyperactivation, exacerbate autoantibody production, and 
enhance DC and Th1 differentiation and expansion in pre-au-
toimmune young mice.48 On the contrary, a recent study has 
demonstrated that cDCs were not required for autorective B 
cell activation, and cDC-specific ablation markedly enhanced 
extrafollicular (EF) plasmablast response to self-antigens, 
which the underlying mechanism may be via the regulation of 
Tfh responses.49 

Deficit in DC immunoregulatory function is also observed 
in SLE patients. The spontaneous overexpression of a co-stim-
ulatory molecule, CD86, was found in DCs derived from 
monocytes of SLE patients, and these DCs hyper-responded 
to the activation signal, leading to the high production of IL-
6.50 Circulating pDCs and cDCs from SLE patients displayed 
the downmodulated expression of the inhibitory molecules, 
immunoglobulin-like transcript (ILT) 3 and ILT4, which are 
crucial for tolerogenicity of DCs.51,52 Leukocyte-associated 
immunoglobulin-like receptor 1 (LAIR-1 or CD33) is a re-
ceptor of complement C1q, and their interaction inhibits DC 
differentiation and activation. The expression of LAIR‐1 was 
significantly reduced in pDCs of patients with juvenile SLE, 
suggesting the loss of pDC immunoregulatory properties.53 

Therapeutic potential of dendritic cells in system-
ic lupus erythematosus 

DCs have become a therapeutic target for SLE and oth-
er autoimmune diseases because they participate in the im-
mune dysregulation that contributes to the initiation and 
perpetuation of SLE pathogenesis. Although, anti-inflamma-
tory and immunosuppressive medications have been widely 
used for SLE treatment, these therapies are non-specific and 
elicit clinical adverse effects. Therefore, therapeutic strategies 
that restore immune tolerance to self-antigens are turning 
into promising strategies because they are more specific and 
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Figure 2. Phenotypic and functional features required for tol-DCs.
The key success of utilizing tol-DCs in autoimmune disease therapy is the functional quality of tol-DCs that is adequate for 
suppression of autoimmunity as well as induction of immune tolerance. Tolerogenicity of DCs is determined by the phenotypes, 
functions, and maturation status. Downmodulation of DC maturation, upregulation of immunomodulatory molecules, and in-
creased production of anti-inflammatory mediators are important for negatively regulating T cell immunity, and supporting Treg 
induction and expansion. Expression of chemokines and chemokine receptors are essential for tolDCs migration and localization 
to lymphoid tissues and periphery to interact with T cells. Besides, several intrinsic molecules, such as IDO, HO-1, arginase, and 
retinoic acid, play key roles in modulating tolerogenicity of DCs. PD-Ls, programmed death-ligands; ICOSL, inducible T-cell 
co-stimulator ligand; BTLA, B and T lymphocyte attenuator; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; PD-1, pro-
grammed death-1; FASL, Fas ligand; ILTs, inhibitory receptors Ig-like transcripts; PGE2, prostaglandin E2; IL-1RA, interleukin-1 
receptor antagonist; C1q, complement 1q; THBS1, thrombospondin-1; IDO, indoleamine 2,3-dioxygenase; HO-1, heme oxygen-
ase-1.

type I IFN production, therefore, IRAK4 has become a po-
tential therapeutic target in SLE. IRAK4 inhibitor could 
interfered with immune complex-induced type I IFN pro-
duction in pDCs obtained from SLE patients. Furthermore, 
IRAK4 inhibitor suppressed many genes related to immune 
activation in those of pDCs.63 CD123 (IL-3Rα) is highly ex-
pressed on pDCs, and activation of CD123 is required for 
prolong survival of pDCs.64 Targeting pDCs by anti-CD123 
(CSL362) led to the selective depletion of pDCs from pe-
ripheral blood cells of SLE patients via antibody-dependent 
cell-mediated cytotoxicity (ADCC) mechanism, and contrib-
uted to the reduced type I IFN and limited plasmablast ex-
pansion.65 Bcl-2 has been commonly known as a negative reg-
ulator for apoptotic cell death. Interestingly, Bcl-2 inhibitor
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Depletion of pDCs and suppression of pDC functions are 
the alternative approaches to downmodulate type I IFN-me-
diated exacerbated inflammation. Plasmacytoid DC-specific 
marker BCDA2 is a receptor playing a role in antigen inter-
nalization and presentation.60 The in vitro treatment of pDCs 
obtained from SLE patients with anti-BDCA2 antibodies 
(BIIB059) could suppress pDC function and type I IFN pro-
duction.61 Clinical trials in patients with SLE demonstrated 
that infusion of anti-BDCA2 inhibited type I IFN gene ex-
pression in the blood, diminished immune infiltration in the 
inflamed skin, and ameliorated cutaneous lupus lesions.62 Ac-
tivation of TLR7 and TLR9 mediates signal transduction via 
myeloid differentiation primary response 88 (MyD88) and 
interleukin-1 receptor-associated kinase 4 (IRAK4), leading to
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Figure 3. Summary of DC-targeted therapies in SLE.
The different strategies are utilized for targeting MoDCs and pDCs of SLE patients. A) Autologous MoDCs are skewed to tolero-
genic phenotypes for the future infusion in SLE patients. B) Targeting pDCs emphasizes interfering with cell survival processes 
and inhibition of pDC activation and type I IFN production. VitD3, 1,25-dihydroxyvitamin D3; Dexa, dexmethazone; RSG, ro-
siglitazone; Tol-probiotics, tolerogenic probiotics.

amplification and perpetuation. Therefore, targeting DCs by 
interfering with their function or skewing them to tolerogen-
ic phenotype will provide clinical advantages for SLE treat-
ment (Figure 3). At present, there is limited information 
on clinical manipulation of DCs for SLE treatment which 
may be due to undetermined SLE-specific antigen and hid-
den clues in involvement of individual DC subsets in SLE 
pathogenesis. In addition, a wide variety of pharmaceutical 
and biological agents exploited for DC manipulation in vi-
tro and in vivo produces the different phenotypic and func-
tional features of DCs. Thorough understanding the role of 
DCs and their involvement in SLE pathogenesis will be thus
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MoDCs from SLE patients

A

Maturation i
Pro-inflammatory cytokines i
Anti-inflammatory cytokines i
Inhibition of activated T cells i
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Conclusion and perspectives
One feasible key mechanism underlying SLE develop-

ment and pathogenesis is alteration of DCs in number, phe-
notype, and function. In addition, interplays between DCs 
and adaptive immune components are critical for the disease

selectively depleted pDCs in lupus prone mice and pDCs 
from peripheral blood of SLE patients, and it also inhibited 
type I IFN production.66 Female SLE patients medicated with 
a Bcl-2 inhibitor, venetoclax (ABT-199) showed the safety and 
efficacy, and the multiple ascending doses of venetoclax po-
tentially killed autoreactive B cells.67
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